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Abstract. The modified additive quark model, proposed recently, allows one to improve the agreement of
the standard additive quark model with the data on the pp, p̄p, π±p, γp and γγ total cross-sections, as well
as on the ratios of real to imaginary part of the pp and p̄p amplitudes at t = 0. Here, we extend this model
to non-forward elastic scattering of protons and antiprotons. A high quality reproduction of the angular
distributions at 19.4GeV ≤ s1/2 ≤ 1800GeV is obtained. A zero at small |t| in the real part of the even
amplitude in accordance with a recently proved general high energy theorem is found.

1 Introduction

Small angle elastic scattering of hadrons has always been
a crucial source of information for the dynamics of the
strong interaction. As a rule, these processes, being out-
side the realm of applications of the theory of the strong
interactions (QCD), are described in approaches based on
the S-matrix theory. In particular, the various Regge mod-
els are very successful at this point. However, in the frame-
work of a Regge approach it is impossible to calculate all
the ingredients needed in the amplitudes, and some addi-
tional arguments are used to construct main objects such
as Regge trajectories and residue functions. Sometimes
these are derived from the fundamental theory, but usu-
ally they are based on an intuitive physical picture and on
the analysis of the available experimental data.

The additive quark model (AQM) [1] is an example
of such a line of arguments. The amplitude of the com-
posite particle interaction is constructed as a sum of the
elementary amplitudes of the interaction among the con-
stituent quarks. This leads to remarkable relations (count-
ing rules) between the various hadronic cross-sections, in
rather good agreement with the experimental data.

In a recent paper [2], the standard AQM (which we
abbreviate in this old version as SAQM) and the ensu-
ing counting rules are modified to take into account not
only the quark–gluonic content of the pomeron but also
of the secondary reggeons, as well as the fact that the
soft pomeron is not just a gluonic ladder. The new model,
which we call modified additive quark model (MAQM),
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b e-mail: giffon@ipnl.in2p3.fr
c e-mail: martynov@bitp.kiev.ua

is successfully applied to describe various total cross-sec-
tions (nucleon–nucleon, π meson–nucleon, γ–p and γ–γ)
and the ρ-ratio of the real to the imaginary part of the
forward pp, pp̄ scattering amplitudes. The next step: to
consider the differential cross-sections is the object of this
paper, i.e. we extend and further test the model for t �= 0.
Let us recall that there are two couplings of the pomeron
with quarks in MAQM: the first one corresponds to the or-
dinary vertex quark–pomeron–quark, another one is new
and describes a “simultaneous” interaction of the pomeron
with two quarks in a hadron. It was found from the fit to
the cross-sections in [2] that the corresponding term in
the amplitudes is negative. At some t �= 0 an interference
of the ordinary and new term can produce a zero in the
elastic amplitude and consequently a dip structure in the
differential cross-section. This argument was one of rea-
sons to extend MAQM for t �= 0.

We deal only with pp and pp̄ elastic scattering be-
cause, for these processes, there are available the richest
and most precise experimental data in a wide region of
energy s1/2 and momentum transfer t. Many models (for
instance [3–8]) of pp and pp̄ elastic scattering amplitudes
describe quite well the available data (see also the reviews
[9] and references therein). A supercritical pomeron with
the intercept αP(0) > 1 is used at the Born level for most
of them [3–5]. Such a pomeron must then be unitarized
because it does not satisfy the unitarity constraints. Usu-
ally the method of eikonalization [10] is used to reach this
aim.

A method for reproducing the t �= 0 data, based on
the model of the stochastic vacuum (attractive by its suc-
cess), consists in parameterizing each angular distribution
in the s, t space (see, for example, [8]), the energy de-
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pendence of the amplitude being absorbed in the param-
eters. The price to pay is of course the multiplication of
the number of free parameters. An alternative way is to
construct a model that from the beginning does not vio-
late the requirements for the analyticity and unitarity of
the scattering amplitude1. An example of such a model is
the model of the so-called maximal pomeron and maxi-
mal odderon [6]. However, serious arguments against the
maximal odderon exist [10,11].

In [2], we stick to the last kind of approach and we
use an extended AQM which can be applied not only to
nucleon–nucleon scattering. As an explicit choice, for the
pomeron contribution we choose a simple model, namely
a special case of the soft dipole pomeron, with a unit in-
tercept [7,12] which leads to a high quality description of
the experimental data, both at t = 0 [13–16] and at t �= 0
(we show this in Sect. 4).

In the present paper we will not consider any eikonal-
ization and work with the Born amplitudes since in the
MAQM they do not violate unitarity (although with the
restricted sense set above). However, it is not obvious
that eikonalization should not be carried out since it cor-
responds to take into account the physical processes of
rescattering corrections. We will not discuss this point
here. The present work may be used as a guide for fur-
ther investigations.

It should be stressed that the task of reproducing well
the entire set of high energy data (at all values of the
momentum transfer t), though far from simple, as a long
(and direct) experience teaches us, may seem to have a
poor theoretical content [9]. This is indeed the truth in the
sense that we have not yet any means of determining the
soft amplitudes from first principles. However, we believe
that it is important to explore all the approaches yield-
ing a good agreement with the existing data. To the ex-
tent that these may lead to different extrapolations which,
hopefully and foreseeably, will be checked in future experi-
ments, we shall have a posteriori the means of establishing
a hierarchy among them.

In Sect. 2, we recall the main assumptions of [2], fo-
cussing on a few arguments in favor of the chosen pomeron
used in the MAQM at t = 0. In Sect. 3, we formulate our
MAQM extension for t �= 0. The results of the fit of the
MAQM to the experimental data are presented and dis-
cussed in Sect. 4. We examine also if the amplitude that
fits very well the data automatically exhibits a zero in the
real part of its even component as required by a general
theorem due to Martin [17]. Some items are also discussed
in this section (concerning in particular the odderon and
the logarithmic trajectories).

2 The modified additive quark model at t = 0

Let us review the main properties of the MAQM, formu-
lated for the forward scattering amplitudes (for details see
[2]).

1 We mean only that the model should not violate grossly
and explicitly the constraints of unitarity. This, unfortunately,
does not guarantee that unitarity is satisfied

2.1 Pomeron

The pomeron contribution to the pp and p̄p scattering
amplitude at t = 0 is written as2

A
(pp)
P (s, 0) = 9P 2

p [A(1)
P (s/9, 0) + 2A(2)

P (2s/9, 0)

+ A
(3)
P (4s/9, 0)]. (1)

The choice of the elementary pomeron quark–quark ampli-
tudes A(i=1-3)

P is very important from a phenomenological
point of view. It is known from a comparison of various
pomeron models [13,16] that equivalent good fits to the
t = 0 data on the ρ-ratios of the real to imaginary parts of
the forward amplitude ρ = �eA(s, 0)/�mA(s, 0) and on
the total elastic cross-sections σtot for meson–nucleon and
nucleon–nucleon interactions are achieved, at s → ∞, ei-
ther if σtot ∝ ln(s/s0), or ∝ ln2(s/s0) or ∝ (s/s0)ε. Unfor-
tunately, as far as only pp and p̄p are concerned, existing
data do not allow one to discriminate unambiguously [14]
between these three behaviors. Nevertheless, as noted in
[16], the model with σtot ∝ ln(s/s0) is the most “stable”
in the sense that the fitted parameters and χ2/d.o.f. do
not changed in practice under variation of smin in the en-
ergy range 5–10 GeV (the models were fitted to the data
at s ≥ smin).

Hence, among the possible pomerons, we select a
“dipole pomeron” with an intercept equal to one, αP(0) =
1, i.e. corresponding to a double pole of the amplitude
in the complex angular momenta plane j and yieding an
asymptotic behavior σtot ∝ ln(s/s0) with an economy of
parameters [16]. It is interesting to note that such a dipole
pomeron is a singularity of the partial amplitude, φ(j, t) ∝
(j − αP(t))−γ , with the maximal hardness that does not
violate the evident inequality σelastic(s) ≤ σtot(s). The in-
equality γ ≤ 2 must be satisfied if the pomeron trajectory
at small t is linear, αP(t) ≈ 1+α′

P t, and γ = 2 corresponds
to the dipole pomeron.

The contribution of the dipole pomeron to the forward
hadron–hadron elastic scattering amplitude is written

Ahh
P (s, 0) = C1 + C2ln(−is/s0),

where C1, as follows from the fit, is a negative constant
(we consistently take s0 = 1 GeV2). This may be sur-
prising because at small energies the contribution of the
dipole pomeron to σtot would be negative3. However, this
term can be treated [18] as an effective contribution of the
pomeron rescatterings and it is straightforward to demon-
strate that its sign may be negative. The above arguments
and those given in [2] suggest that we may choose to write
the pomeron amplitudes in MAQM at t = 0 as follows:

A
(1)
P (s, 0) = ig21 [−ζP + L(s)],
A

(2)
P (s, 0) = ig1g2[−ζP + L(s)],
A

(3)
P (s, 0) = ig22 [−ζP + L(s)],

(2)

2 The pomeron contributions to the πp, γp and γγ ampli-
tudes are given in [2]

3 This is noted also in [16]
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where
L(s) = ln(−is/s0).

2.2 Secondary reggeons

In pp and p̄p scattering, the secondary reggeons are numer-
ous; however, for the energy range involved here we can
choose to keep only f and ω reggeons, two non-degenerate
C = +1 and C = −1 meson trajectories. As is argued in
[2] instead of nine identical diagrams for the f reggeon in
the SAQM, leading to the factor 9, one obtains

A
(pp)
f (s, 0) = P 2

p (5 + 4λf )A(qq)
f (s/9, 0), (3)

where
A

(qq)
f (s, 0) = ig2f (−is/s0)αf (0)−1 (4)

and λf is a constant taking into account a mixing of uū
and dd̄ quark states in the f reggeon. Similarly, for the ω
reggeon we set

A(pp)
ω (s, 0) = P 2

p (5 + 4λω)A(qq)
ω (s/9, 0), (5)

A(qq)
ω (s, 0) = g2ω(−is/s0)αω(0)−1. (6)

An important property of the dipole pomeron model is
that all fits give a high value of the f reggeon intercept,
αf (0) ≈ 0.80 ÷ 0.82 [13–16]. Does such an intercept con-
tradict the data on the f trajectory known from the res-
onance region? The answer is “yes” if the trajectory is
assumed to be linear. However, aside from general theo-
retical arguments against linear trajectories, the experi-
mental data on the resonances lying on the f trajectory
indicate its non-linearity (see Fig. 1).

The following parabola passes exactly through the
three known resonances: αf (t) = αf (0) + α′

f t+ βf t
2 with

αf (0) = 0.96, α′
f = 0.59 GeV−2, βf = 0.03 GeV−4. This

leads to a too high intercept and can cause problems in the
fit to differential cross-sections at large |t|. A more realistic
trajectory such as αf (t) = αf (0) + γ1((4m2

π)1/2 − (4m2
π −

t)1/2 )+γ2((t1)1/2 −(t1 −t)1/2) gives 0.77 < αf (0) < 0.87.
Generally, there is an evident correlation between the

intercept of the f reggeon and the model for the pomeron.
This is due to the fact that in all known processes,
pomeron and f reggeon contribute additively. As a rule, a
higher f intercept is associated with a slower growth with
energy due to the pomeron contribution (as an example
see also [16]). In Fig. 2, we illustrate this observation and
show how αf (0) is correlated with a power of lns in the be-
havior of the total cross-section, if the forward scattering
amplitudes are parameterized in the form

Ahh(s, 0) = i[C1 + C2lnγ(−is/s0)] +R(s, 0),

where the explicit form of the secondary reggeon contri-
bution R(s, 0), depends on the nature of the interacting
hadrons (see [13,16] for details).

In our opinion, a good way to fix the intercepts of
f and ω reggeons is after fitting the total cross-sections.
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Fig. 1. Real part of the f trajectory versus m2, the squared
mass of the resonance. The solid line is the square-root tra-
jectory used in the present work (see the text). The dashed
straight line is the result of a linear fit
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Fig. 2. Intercept of the f trajectory correlated with the power
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Doing so and avoiding an extra number of parameters, we
choose the following form of the f trajectory:

αf (t) = αf (0) + γf (
√
tf − √

tf − t),

where the intercept αf (0) = 0.810 is fixed from the fit
[2] to the total cross-sections, the effective threshold tf =
14.964 GeV2 and the parameter γf = 5.504 GeV−1 are
determined from the fit to the positions of the three known
resonances.
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For the ω trajectory (with only two known resonances
and absence of information on possible higher resonances)
we use a linear form,

αω(t) = αω(0) + α′
ωt,

with the intercept αω(0) = 0.422 from [2] and with the
slope α′

ω = 0.946 GeV−2 determined in a fit to the reso-
nances.

3 The modified additive quark model at t �= 0

The amplitudes of interest are written

Ap̄p
pp(s, t) = AP(s, t)+Af (s, t)± [AO(s, t)+Aω(s, t)]. (7)

The normalization is

σtot(s) = 8π�mA(s, t = 0),
dσ
dt

(s, t) = 4π |A(s, t)|2 .
(8)

The starting points for a parameterization of all terms
in (7) at t �= 0 are the corresponding partial amplitudes
defined at t = 0 in [2] and rewritten in detail in (1)–
(6). A special discussion will be devoted to the odderon
amplitude aO(s, t) which is out of the game at t = 0.

Let us recall that, in accordance with the main as-
sumption of the additive quark model (as well as of
MAQM [2]), there is an interaction of two (in fact of 3×3)
constituent quarks (or lines in terms of a diagram), each of
them carrying only a part of the momentum p. Therefore,
we must define sq = (p1 + p2)2 = s/9, for protons, as-
suming that the whole momentum is distributed equally
between all quarks in each of them. As concerns the t
channel, we consider for pomeron and f reggeon a single
exchange (one line in the t channel in terms of a diagram);
our odderon also is supposed to behave as a one reggeon
exchange. Consequently, we have no reason to divide t in
the final amplitude by any number4.

3.1 Pomeron

Starting from (1), the pomeron contribution at t �= 0 will
have the form

AP(s, t) = 9[A(1)
P (s/9, t) + 2A(2)

P (2s/9, t) +A(3)
P (4s/9, t)].

(9)
The most direct generalization of A(i=1-3)

P (s, 0) (in (2)) is
to consider all “coupling constants” g1, g2, ζP as functions
of t and to multiply each Ai

P(s, 0) by the usual Regge
factor (−is/s0)αP(t)−1. Namely, we write

A
(1)
P (s, t) = ig21(t)[−ζP(t) + L(s)](−is/s0)αP(t)−1,

A
(2)
P (s, t) = ig1(t)g2(t)[−ζP(t) + L(s)]

× (−is/s0)αP(t)−1, (10)

A
(3)
P (s, t) = ig22(t)[−ζP(t) + L(s)](−is/s0)αP(t)−1.

4 Such a division, e.g. by 9, occurs when three gluon or three
pomeron exchanges (three lines in t channel) are considered
(as in [19]), implying a distribution of the momentum q along
three lines, each of them being assumed to carry an averaged
momentum q/3

As the simplest variant we choose the linear pomeron tra-
jectory (again with an intercept equal to 1)

αP (t) = 1 + α′
P t; (11)

we consider also the case of a logarithmic trajectory which
is discussed in details in Sect. 4.

Of course, more sophisticated pomeron models can be
proposed, but these lead to an extra number of parameters
and we will not consider them. Finally, to avoid prolifer-
ation of parameters, we will assume simple exponential
“residue functions” gi=1,2 and ζP :

g1(t) = g1 exp(b1t), g2(t) = g2 exp(b2t), ζP(t)
= ζP exp(bζP t). (12)

Thus there are seven (g1, g2, ζP , b1, b2, bζP , α
′
P) parameters

for the pomeron term of the amplitude. With this pomeron
model the Froissart–Martin bound is not violated and the
total cross-section behaves as lns when s → ∞.

3.2 Secondary reggeons

Generalizing [2], the f reggeon amplitude in the MAQM
is written as

Af (s, t) = (5 + 4λf )A(qq)
f (s/9, t), (13)

where

A
(qq)
f (s, t) = ig2f

(
−i
s

s0

)αf (t)−1

ebf t,

αf (t) = αf (0) + γf (
√
tf − √

tf − t). (14)

As already noted above, for that f reggeon trajectory we
choose a square-root dependence on t, which is more suit-
able than a linear one, and fix its parameters from the
fits to cross-sections and resonances (see Sect. 2.2). The
value of λf is unimportant if only pp and p̄p processes
are considered (this is equivalent to the redefinition of the
coupling gf ). Nevertheless, for the present work we keep
λf = 0.439 which was obtained from the fit at t = 0 (see
[2]). The number of free parameters for a fixed trajectory
is then only two (gf , bf ).

Following the previous considerations, we write for the
ω reggeon

Aω(s, t) = (5 + 4λω)A(qq)
ω (s/9, t), (15)

where

A(qq)
ω (s, t) = g2ω

(
−i
s

s0

)αω(t)−1

ebωt,

αω(t) = αω(0) + α′
ωt. (16)

For the ω reggeon trajectory, we recall that we choose
a linear dependence on t, with the parameters given in
Sect. 2.2.
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In [12] a multiplicative factor rω(s, t) was introduced
in A

(qq)
ω (s, t) to describe the so-called “cross-over phe-

nomenon”, namely, a zero at small t in the difference of the
p̄p and pp differential cross-sections. Here, we extend the
kinematic region under consideration up to |t| ≈ 14 GeV2

and also include odderon contributions. An interference
of various odd terms in amplitude now could produce the
mentioned zero automatically and thus we set rω(s, t) = 1.
Again, repeating the arguments given above for the f
reggeon, we put λω = 1. When the trajectory is fixed,
we are left with only two free parameters (gω, bω).

3.3 Odderon

This crossing-odd contribution (added to the ω reggeon) is
a quite delicate and ambiguous point, lacking sufficiently
precise and numerous data. A widespread consensus [13,
14,16], however, is that an odderon contribution while in-
significant at t = 0 is very relevant in the large |t| domain.

As compared with the previous contributions, it is im-
portant to notice that it is impossible to apply to the
odderon any additive quark model rule. The odderon, in
contrast with the pomeron and secondary reggeons, in-
teracts with the whole proton rather than with separate
quarks since three gluons (or the odderon according to
Donnachie and Landshoff [20]) couple simultaneously with
three quarks in each p or p̄.

As repeatedly mentioned, in this paper we stick to the
Born approximation and rescattering corrections are not
taken into account. This is known to be inadequate from
the conceptual point of view and not just for practical
reasons of restoring unitarity when the Born approxima-
tion leads to its violation. The point is particularly deli-
cate concerning the odderon which, by universal consen-
sus, should be important at large |t|. For this reason, we
parameterize the odderon, somewhat artificially, as the
sum of two contributions which we denote as “soft” and
“hard”:

AO(s, t) = A
(s)
O (s, t) +A(h)

O (s, t). (17)

As is known, the contribution of odderon at t = 0 is neg-
ligible. We take into account this fact multiplying both
components by a factor vanishing at t = 0. For the soft
odderon we assume like for the pomeron a dipole form,
suitably damped5

A
(s)
O (s, t) = gOs(t)[(1 − eβst)ln(−is/s0)]µ (18)

× [−ζOs(t) + ln(−is/s0)]
(

−i
s

s0

)αO(t)−1

,

while for the hard one, we choose

A
(h)
O (s, t) = gOh(1−eβht)[ln(−is/s0)]ν

1
(1 − t/tOh)4

. (19)

We should give here a few comments concerning the choice
of the odderon amplitude defined by the above equations.

5 Strictly speaking it has dipole form only if µ = 0

(1) The contribution of the soft odderon to σelastic is dom-
inated by the region where |t| is small. In this domain
the factor (1−eβst)ln(−is/s0) is nearly constant. This
means that the soft odderon does not violate the evi-
dent inequality σelastic ≤ σtot at any value of µ.

(2) At the same time the amplitude should not have a
singularity at t = 0; therefore µ must be an integer.
In the fits we have considered µ = 1 and µ = 2.

(3) The hard odderon does not exponentially decrease
with |t|, therefore it does not violate the restriction
σelastic ≤ σtot at any s only if ν ≤ 1/2.

(4) We consider a linear odderon trajectory but with a
non-unit intercept, only constrained by unitarity6:

αO(t) = 1 + δO + α′
Ot, δO ≤ 0. (20)

In fact, as will be emphasized below, only the upper
bound of the intercept may be kept.

(5) As for the pomeron, the soft residue functions are
taken in an ordinary exponential form

gOs(t) = gOsebOt, ζOs(t) = ζOebζO t. (21)

The case of a logarithmic trajectory is reserved for dis-
cussion. Thus the odderon contribution is controlled
by a maximum of ten additional parameters: gOs, ζO,
βs, bO, bζO , δO, α

′
O, gOh, tOh, βh.

The grand total number of free parameters for MAQM
is twenty-six; however, this number will be reduced by
fixing some of them by virtue of special arguments. For
example, this paper being devoted to pp and p̄p angu-
lar distributions, all coupling constants and intercepts are
fixed from the fit to σtot and ρ at t = 0 as reported in [2];
furthermore, the remaining parameters of the reggeon tra-
jectories are fixed here from the resonances; not excluding
simplifications in the chosen form for the odderon.

4 Results and discussion

4.1 Previous results at t = 0

It is our choice to extract from [2] the informations useful
for pp and p̄p at t = 0. Of course, we do not claim that
better fits are not possible for forward scattering; many
very good old and recent parameterizations beyond our
scope in the present discussion are available for pp and
p̄p processes. Thus, as a first step, we refer to the results
found in [2], where 217 t = 0 data (for pp and p̄p) with
4 GeV≤ s1/2 ≤1800 GeV [21] have been taken into ac-
count, within combined fits of the pp, p̄p, π−p, π+p, γγ, γp
total cross-sections and ρ-ratios. The selected results of
interest here are given in Table 1, which exhibits the im-
provement brought to the old AQM by the modifications
called in the revisited AQM. The χ2/d.o.f. (for all pro-
cesses) was 1.78 in the MAQM (recall that we fitted our
model to the data at s1/2 ≥ 4 GeV instead of s1/2 ≥ 5 GeV

6 For a discussion of a possible intercept less than one for
the odderon, see for example [10] and references therein
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Table 1. The partial χ2s obtained by fitting at t = 0 [2] in
the SAQM (old) and the MAQM (modified)

Observable σpp
tot σp̄p

tot ρpp ρp̄p

Number of points 85 51 64 17

χ2 SAQM 220 240 157 17
χ2 MAQM 53 59 147 18

in [13,16]). The recalculated χ2/d.o.f. (specifically for pp,
p̄p processes) is 1.32 in the MAQM. The corresponding
behaviors of σtot(s) and of ρ(s) = �eA(s, 0)/�mA(s, 0)
are plotted in [2]. To complete the discussion, we give in
Table 2 the parameters issued from the combined fits in
[2], used here for the pp and p̄p processes.

4.2 MAQM results at t �= 0

The previous seven parameters are kept fixed to their val-
ues determined by the t = 0 combined fits. In addition,
we fixed from fits to the resonances those parameters of
the reggeon trajectories that are relevant at t �= 0. Their
determination in the present work is recalled in Table 3
(see also Sect. 2.2).

Only the remaining parameters are fitted in isolation
from the angular distributions. Of course, the final χ2

could be improved by refitting the complete set of pa-
rameters for the pp and p̄p processes alone, but we decide
against doing so. In this second step, we account for 959
t �= 0 data [21] with 0.1< |t| (GeV2) ≤ 14.2; 19.4≤ s1/2

(GeV) ≤630. The selection |t| > 0.1 GeV2 is used in or-
der to exclude the Coulomb–nuclear interference region.
It could be included as a refinement.

After preliminary trials, we select the following condi-
tions for the current parameterization:

(i) µ = 2 is chosen here because it gives a slightly better
χ2, but taking µ = 1 does not influence significantly
the quality of the fit: once more the data do not seem
precise enough to select a specific form of the odd-
eron;

(ii) ν = 1/2: for this (maximal) value, the odderon does
not violate unitarity, the results at high energy (LHC)
do not seem abnormal and the odderon can be consid-
ered as an effective phenomenological contribution;

(iii) one may fix without damaging the results a unit in-
tercept for the odderon (δO = 0) as for our pomeron
and in agreement with [22];

(iv) linear trajectories are used throughout (except for
the f), which represents the more economic (if not
the more efficient) solution;

(v) furthermore, as unitarity requires [23], we con-
strained α′

od ≤ α′
p.

We found the results distributed according to Table 4.
The corresponding χ2/d.o.f. (for t �= 0) is 2.38 (for 959

data and 15 parameters listed in Table 5) and recalculated
with the t = 0 and t �= 0 data together (with the couplings
and intercepts given in Table 2) is 2.19 (for 1176 data and
22 parameters).

Fig. 3. Fit of the differential cross-sections of the pp interac-
tion, calculated in MAQM. A factor 10−2 between each suc-
cessive energy is omitted

Fig. 4. The same as in Fig. 3, for p̄p. The Tevatron data are
not fitted

We found, within the MAQM, a pretty good repro-
duction of the data (including the dip and the high |t|
regions), exhibited in Figs. 3 and 4.

Searching for an improvement of our results (and ac-
cepting to “measure” the quality of a model by the χ2/
d.o.f. because we have nothing better), as already said, it
is possible to get a better agreement with the data when
refitting all the parameters together to the forward and
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Table 2. Values of the parameters controlling the MAQM amplitudes at t = 0 [2]. Recall that
the pomeron intercept equals 1, and the values quoted for gf and gω are coupled to λf = 0.439
and λω = 1, respectively

Parameter g1 (GeV−1) g2 (GeV−1) ζP gf (GeV−1) αf (0) gω (GeV−1) αω(0)

Value in
MAQM 0.3166 −0.0239 3.396 1.112 0.8100 0.3948 0.4217

Table 3. Values of the parameters driving the reggeon trajec-
tories at t �= 0, determined by fitting the resonances

Reggeon “f” “ω”

trajectory square-root (14) linear (16)

number of data 3 resonances 2 resonances

parameter γf tf α′
ω

5.504GeV−1 14.964GeV2 0.9459GeV−2

Table 4. The partial χ2 obtained by fitting the angular dis-
tributions in the MAQM with the parameters in Table 5

Observable (dσ/dt)pp (dσ/dt)p̄p

Number of points 758 201

χ2 1636 616

Table 5. Parameters of MAQM obtained in fitting the angular
distributions

Pomeron b1, GeV−2 .1975E+01
b2, GeV−2 −.2121E+00
bζP , GeV

−2 .1227E+01
α′

P , GeV
−2 .3308E+00

f reggeon bf , GeV−2 .4094E+01

ω reggeon bω, GeV−2 ≈ 0.0

Odderon gOs, GeV−2 −.1305E−02
(soft) ζO .2234E+02

βs, GeV−2 .5023E+01
bO, GeV−2 −.1693E+00
bζO , GeV−2 .1417E+01
α′

O, GeV
−2 .3208E+00

Odderon gOh, GeV−2 .2434E+01
(hard) tOh, GeV2 .4137E+00

βh, GeV−2 .1197E+01

non-forward observables, for pp and p̄p only. In that case,
we find only a non-significant improvement in the sense
that no modifications are seen on the figures. Any signifi-
cant improvement of the χ2 is not automatically followed
by an improvement visible on the curves.

It is of some interest to compare our results with those
of other approaches. A strict comparison is not easy be-
cause, if many of them are available, they present differ-
ent objectives, and it is not our aim to discuss the relative
virtues and shortcomings of each work. The model of [8]
for example is an eikonalized model, not operating at the

Table 6. First values of −t cancelling �eA+(s, t) and
�eAP(s, t), versus the energy, obtained in the MAQM fit

Energy zero of �eA+ zero of �eAP
(GeV) −t (GeV2) −t (GeV2)

546 0.31 0.37
1800 0.27 0.29
10000 0.21 0.22
14000 0.21 0.22

Born level like ours, in which the energy dependence of
the amplitude is absorbed in the parameters. At the Born
level, the nearest models are probably the old models of
[20,6], based on the Regge theory; furthermore, their re-
sults are grossly comparable to ours. The first one contains
in particular a two pomeron exchange and contributions
of other cuts which are absent in our approach. The sec-
ond one involves a large number of parameters and the
data at high |t| are not correctly reproduced.

4.3 Unitarity, odderon and logarithmic trajectories

4.3.1 �eA+(s, t)

As a by-product of the present study, we propose to con-
sider the scattering amplitude obtained in our MAQM
from the point of view of unitarity and analyticity. To
be specific we want to insure that this amplitude not only
respects the Froissart–Martin bound but also exhibits a
zero at low |t| in �eA+(s, t), the real part of its even con-
tribution (with respect to the C-parity), as required by a
high energy theorem recently stated by Martin [17].

The situation of the first zero of �eA+(s, t) is shown
in Table 6 for some selected high energies. We agree with
the theorem, with the results quoted in [17] and some of
the extensive discussion [8] exhibiting in particular a first
zero of the real part at low |t|, decreasing monotonically
with the energy.

By also reporting �eAP(s, t) in Table 6, we exhibit a
manifestation of the dominance of the pomeron at high
energies, when the f reggeon contribution becomes negli-
gible above the ISR energy range.

4.3.2 �mA+(s, t)

�mA+(s, t), the imaginary part of the even component
of the amplitude, has an oscillatory behavior for large
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|t|, in spite of lacking any rescattering corrections in the
model. This is a consequence of the negative sign of the
new MAQM (comparing with the old SAQM) coupling
constant g2 (see Table 2). Oscillations, or something ap-
pearing as diffraction-like secondary structures, are hid-
den in the differential cross-sections because of the odd-
eron contribution dominating in this domain. Of course
our present MAQM model cannot produce any oscillations
at large |t|, because it is a model at the Born approxima-
tion level, in which the odderon dominates at very high
energy and in the high |t| region with a ∼ 1/t4 behavior
of the amplitude (see (19)). As a next step, it would be
interesting to eikonalize the model to see in particular if
oscillations in dσ/dt appear. We believe that rescattering
corrections (we plan to calculate them in the near future)
may be important at such high energies as will be inves-
tigated for instance in the TOTEM and PP2PP projects
(see for example [24]), and as a consequence any extrap-
olation (in particular those of the angular distributions)
may be doubtful within the present version of the non-
eikonalized MAQM model.

4.3.3 Logarithmic trajectories

As already mentioned above, the “hard” component of the
odderon with a power behavior at large |t| looks affected
from the point of view of the Regge approach (note here
that for the whole set of data the ratio |t|/s is small, and
we are in the domain of small angle scattering, that, we
believe, should be described by Regge theory while the
hard odderon component can be important at larger |t|).

Taking into account the above argument we have con-
sidered the model without its “hard” odderon component,
but for the pomeron and the (soft) odderon we have tested
the non-linear trajectories with a logarithmic behavior:

αi(t) = 1 + γi[1 − (1 − ti/t)ln(1 − t/ti)], i = P,O. (22)

The minimal value of the threshold tP (there are many
thresholds in the t channel for pp and p̄p) should be given
by the t channel physical state with the minimal mass (in
our case a two-pion state, so tmin

P = 4m2
π). Nevertheless, in

order to take into account the influence of other thresholds
we consider tP as a free (effective) parameter. A similar
argument can be repeated for the odderon trajectory.

Logarithmic trajectories mimic a power decreasing am-
plitude with |t| → ∞. However, in order to give a mean-
ing to such a possibility, it is necessary to replace the
exponential residue functions by power ones. This leads
to an extra number of free parameters. Therefore we used
another, probably oversimplified, method. All exponents,
exp(bit) in the pomeron and in the soft odderon terms are
replaced by exp[(αP(O)(t) − 1)bi]. Using logarithmic tra-
jectories, we do not aim to obtain the best fit; rather we
only want to check our belief (and to demonstrate for the
reader) that it is then possible to reproduce the large |t|
data.

The resulting χ2/d.o.f. = 3.39 as well as the agree-
ment with the data is not so bad. The calculated angular

distributions slightly deviate from the data points mainly
around the dips for pp but, as we expected, are very well
reproduced for the large |t| domain.

4.3.4 Conclusion

Summarizing, we emphasize that the obtained results con-
firm and reinforce the conclusion of [2] as a further test
of the model: taking account of the corrections to the
pomeron–quark interaction and obtaining new counting
rules for the secondary reggeons. In other words using the
modified additive quark model instead of the standard
additive quark model leads to a good agreement with the
available experimental data not only at t = 0, but also at
t �= 0. Besides this we found that the data on the elastic
pp and p̄p scattering at high energies can be reproduced
with a high quality in a model with the dipole pomeron,
which has a unit intercept, αP(0) = 1, leading to an inter-
mediate growth of the total cross-sections, σtot(s) ∝ lns
when s → ∞. Finally, a zero at small |t| is revealed in the
real part of the even amplitude, in agreement with a high
energy theorem by Martin.
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